A mesh generation method that can generate an optimal mesh for a blade passage at a single attempt is developed using deep reinforcement learning (DRL). Unlike the conventional methods, where meshing parameters must be specified by the user or iteratively optimized from scratch for a newly given geometry, the developed method employs DRL-based multi-condition (MC) optimization to define meshing parameters for various geometries optimally. The method involves the following steps: (1) development of a base algorithm for structured mesh generation of a blade passage; (2) formulation of an MC optimization problem to optimize meshing parameters introduced while developing the base algorithm; and (3) development of a DRL-based mesh generation algorithm by solving the MC optimization problem using DRL. As a result, the developed algorithm is able to successfully generate optimal meshes at a single trial for various blades.
翻译:利用深度强化学习(DRL)开发出能够在一次尝试中为刀片通过生成最佳网格的网格生成方法。 与传统方法不同,在传统方法中,网格参数必须由用户指定,或从头到尾对新给定几何进行迭代优化,发达方法采用基于DRL的多条件优化,以优化地界定各种地貌的网格参数。该方法包括以下步骤:(1) 为刀片通过的结构化网格生成制定基本算法;(2) 拟订MC优化模型优化在开发基算法时引入的网格参数;(3) 开发基于DRL的网格生成算法,通过使用DRL解决MC优化问题。结果,发达算法能够在各种刀片的一次试验中成功生成最佳的网格。