Physics-informed neural network (PINN) has recently gained increasing interest in computational mechanics. In this work, we present a detailed introduction to programming PINN-based computational solid mechanics. Besides, two prevailingly used physics-informed loss functions for PINN-based computational solid mechanics are summarised. Moreover, numerical examples ranging from 1D to 3D solid problems are presented to show the performance of PINN-based computational solid mechanics. The programs are built via Python coding language and TensorFlow library with step-by-step explanations. It is worth highlighting that PINN-based computational mechanics is easy to implement and can be extended for more challenging applications. This work aims to help the researchers who are interested in the PINN-based solid mechanics solver to have a clear insight into this emerging area. The programs for all the numerical examples presented in this work are available on https://github.com/JinshuaiBai/PINN_Comp_Mech.
翻译:最近,物理知情神经网络(PINN)对计算力越来越感兴趣。在这项工作中,我们详细介绍了基于 PINN 的计算固体力学程序。此外,对基于 PINN 的计算力力学两个普遍使用的物理知情损失功能进行了总结。此外,提出了从 1D 到 3D 的数值问题,以显示基于 PINN 的计算固体力学的性能。程序是通过Python 编码语言和TensorFlow 图书馆以逐步解释的方式建立的。值得强调的是,基于 PINN 的计算力学方法很容易实施,可以推广到更具挑战性的应用中。这项工作旨在帮助对基于 PINN 的固体力力学解决器感兴趣的研究人员对这个新兴领域有清晰的了解。这项工作中所有数字性实例的方案可以在 https://github.com/Jinshuai-Bai/PINN_Com_MEch上查阅。