We investigate the reconfigurable intelligent surface (RIS) assisted downlink secure transmission where only the statistical channel of eavesdropper is available. To handle the stochastic ergodic secrecy rate (ESR) maximization problem, a deterministic lower bound of ESR (LESR) is derived. We aim to maximize the LESR by jointly designing the transmit beamforming at the access point (AP) and reflect beamforming by the phase shifts at the RIS. To solve the non-convex LESR maximization problem, we develop a novel penalty dual convex approximation (PDCA) algorithm based on the penalty dual decomposition (PDD) optimization framework, where the exacting constraints are penalized and dualized into the objective function as augmented Lagrangian components. The proposed PDCA algorithm performs double-loop iterations, i.e., the inner loop resorts to the block successive convex approximation (BSCA) to update the optimization variables; while the outer loop adjusts the Lagrange multipliers and penalty parameter of the augmented Lagrangian cost function. The convergence to a Karush-Kuhn-Tucker (KKT) solution is theoretically guaranteed with low computational complexity. Simulation results show that the proposed PDCA scheme is better than the commonly adopted alternating optimization (AO) scheme with the knowledge of statistical channel of eavesdropper.
翻译:我们调查的是可重新配置的智能表面(RIS) 协助的下行链路安全传输,只要只有电子窃听器的统计渠道,我们就会在安全传输上找到帮助。为了处理静电双相近(PDCA)优化框架,我们得出了ESR(LESR)的确定性下下限。我们的目标是通过在接入点(AP)联合设计传输光束来尽量扩大LESR(LIS),并反映RIS的相向转换。为了解决不连接的LESR最大化问题,我们根据惩罚双相近(PDCA)双相近(PDCA) 优化(PDDD) 优化框架,其中严格限制和双重化为扩大的Lagrangian组成部分的客观功能。拟议的PDCA算法在访问点(即,内环比区连续连接(BSCA) 更新优化变量;而外环调整了增强的Lagerrange e convex近(PDCA) 优化(LagerangD) 优化的双轨(A-KK) 保证的系统成本化) 显示SIMKAS-KSIM-K) 的系统, 和SIMAL-K(SIMAL-K) 的优化的优化的平衡,这是一个更好的共同的系统。