Benford's law, also called Significant Digit Law, is observed in many naturally occurring data-sets. For instance, the physical constants such as Gravitational, Coulomb's Constant, etc., follow this law. In this paper, we define a score, $MLH$, for how closely a Neural Network's Weights match Benford's law. We show that Neural Network Weights follow Benford's Law regardless of the initialization method. We make a striking connection between Generalization and the $MLH$ of the network. We provide evidence that several architectures from AlexNet to ResNeXt trained on ImageNet, Transformers (BERT, Electra, etc.), and other pre-trained models on a wide variety of tasks have a strong correlation between their test performance and the $MLH$. We also investigate the influence of Data in the Weights to explain why NNs possibly follow Benford's Law. With repeated experiments on multiple datasets using MLPs, CNNs, and LSTMs, we provide empirical evidence that there is a connection between $MLH$ while training, overfitting. Understanding this connection between Benford's Law and Neural Networks promises a better comprehension of the latter.


翻译:Benford 的法律, 也称为“ 重大数字法 ”, 在许多自然发生的数据集中都可以看到。 例如, 物理常数, 如重力、 库伦普的常数等, 都遵循此法。 在本文中, 我们定义了一个分数, $MLH$, 用于神经网络的重量与本福特的法律之间的关系。 我们还调查了数据在 Weights 中的影响, 以解释为什么NUS 可能遵循本福德的法律。 我们用MLP、 CNN 和 LSTMS 反复对多个数据集进行了实验。 我们提供证据表明, 从AlexNet到ResNeXt 在图像网络、变换器(BERT、Lectra等)上受过训练的几个建筑, 以及其他经过预先训练的任务种类广泛的模型, 它们的测试性能和美元与BenMLH$H 之间有很强的关联性关系。 我们还调查了数据在Weights 中的影响, 解释为什么NUS 可能遵循本福德法律。 我们反复用MLPs、 和LSTMMMMS, 我们提供了实验性证据表明, 在Binalforlation之间有更好的理解 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
1+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
7+阅读 · 2018年8月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年3月31日
Arxiv
1+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
7+阅读 · 2018年8月28日
Top
微信扫码咨询专知VIP会员