In this paper we propose a methodology to accelerate the resolution of the so-called ``Sorted L-One Penalized Estimation'' (SLOPE) problem. Our method leverages the concept of ``safe screening'', well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we introduce a family of \(n!\) safe screening rules for this problem, where \(n\) is the dimension of the primal variable, and propose a tractable procedure to verify if one of these tests is passed. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. We assess the performance of our proposed method on a numerical benchmark and emphasize that it leads to significant computational savings in many setups.
翻译:在本文中,我们提出了一个加速解决所谓的“ Sorted L- One minminalized imassisation” (SLOPE) 问题的方法。 我们的方法利用了“安全筛选”的概念, 这一概念在文献中得到了很好的研究, 用于 \ textit{ group- separable} corsity- information duction 规范, 目的是确定 SLOPE 解决方案的零点。 更具体地说, 我们引入了一个“ 安全筛选” 规则的大家庭, 其中,\ (n\\ ) 是原始变量的层面, 并提出了一个可移植的程序, 以核实其中之一是否通过。 我们的程序非常复杂, \ (mathcal{O} (n\log n +LT)\, 其中,\ (T\leq n) 是取决于问题的常数, 并且\\ (L\\) 是测试确定的零数的数量。 我们评估了我们关于数值基准的拟议方法的绩效, 并强调它导致许多设置中的重大计算节约。