Gaussian process (GP) regression in large-data contexts, which often arises in surrogate modeling of stochastic simulation experiments, is challenged by cubic runtimes. Coping with input-dependent noise in that setting is doubly so. Recent advances target reduced computational complexity through local approximation (e.g., LAGP) or otherwise induced sparsity. Yet these do not economically accommodate a common design feature when attempting to separate signal from noise. Replication can offer both statistical and computational efficiencies, motivating several extensions to the local surrogate modeling toolkit. Introducing a nugget into a local kernel structure is just the first step. We argue that a new inducing point formulation (LIGP), already preferred over LAGP on the speed-vs-accuracy frontier, conveys additional advantages when replicates are involved. Woodbury identities allow local kernel structure to be expressed in terms of unique design locations only, increasing the amount of data (i.e., the neighborhood size) that may be leveraged without additional flops. We demonstrate that this upgraded LIGP provides more accurate prediction and uncertainty quantification compared to several modern alternatives. Illustrations are provided on benchmark data, real-world simulation experiments on epidemic management and ocean oxygen concentration, and in an options pricing control framework.


翻译:大型数据环境中的Gausian进程(GP)回归(GP)通常产生于代用模拟模拟模拟实验的替代模型,在大数据环境下,这种回归往往会受到立方运行时间的挑战。在这种环境下,使用以投入为主的噪音是双重的。最近的进步目标通过本地近似(如LAGP)或其他诱发的偏差降低了计算复杂性。然而,这些在经济上无法在试图将信号与噪音分开时包含一个共同的设计特征。复制可以提供统计和计算效率,鼓励将本地代用模型工具包的若干扩展。在本地内核结构中引入一个孵化器只是第一步。我们认为,在速度-V-准确度边界上已经比LAGP偏好的新导点配方(LIGP),在复制时会带来额外的优势。 Woodbury 身份允许仅用独特的设计地点来表达本地内核结构,增加数据的数量(即社区规模),而无需额外的软体即可加以利用。我们证明,这一升级的LIGPP提供了比一些现代数据模型和海洋控制模型框架的更精确的预测和不确定性量化。我提供了一种数据。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员