Domain adaptation aims to leverage a label-rich domain (the source domain) to help model learning in a label-scarce domain (the target domain). Most domain adaptation methods require the co-existence of source and target domain samples to reduce the distribution mismatch, however, access to the source domain samples may not always be feasible in the real world applications due to different problems (e.g., storage, transmission, and privacy issues). In this work, we deal with the source data-free unsupervised domain adaptation problem, and propose a novel approach referred to as Virtual Domain Modeling (VDM-DA). The virtual domain acts as a bridge between the source and target domains. On one hand, we generate virtual domain samples based on an approximated Gaussian Mixture Model (GMM) in the feature space with the pre-trained source model, such that the virtual domain maintains a similar distribution with the source domain without accessing to the original source data. On the other hand, we also design an effective distribution alignment method to reduce the distribution divergence between the virtual domain and the target domain by gradually improving the compactness of the target domain distribution through model learning. In this way, we successfully achieve the goal of distribution alignment between the source and target domains by training deep networks without accessing to the source domain data. We conduct extensive experiments on benchmark datasets for both 2D image-based and 3D point cloud-based cross-domain object recognition tasks, where the proposed method referred to Domain Adaptation with Virtual Domain Modeling (VDM-DA) achieves the state-of-the-art performances on all datasets.


翻译:域适应的目的是利用一个标签丰富域(源域),帮助在标签封闭域(目标域)中进行模型学习。大多数域适应方法要求源和目标域样品共存,以减少分布不匹配,然而,由于不同的问题(例如储存、传输和隐私问题),在现实世界应用中,获取源域样品并不总是可行。在这项工作中,我们处理源数据无源、不受监督域适应问题,并提出称为虚拟域模型(VDM-DA)的新颖的分发方法。虚拟域作为源域和目标域之间的桥梁。一方面,我们根据大致高斯和目标域样本的分布来生成虚拟域样品样品样本,以减少分布不匹配,但是,由于事先经过培训的源模型2,虚拟域域域域与原始源域保持类似的分布。我们成功地设计了一种有效的分发协调方法,以减少虚拟域和目标域之间的分布差异,方法是逐步改善目标域域域分布的缩缩缩略性,在模型数据库上,在深度数据库上进行数据校准,在数据库2个域域域间进行数据排序。我们成功地完成了数据传播,在数据库上,在数据库中,在数据库和数据库的跨域域域域域域域里,我们通过学习了数据定位,成功地实现了数据分配方法,我们实现了数据传播,在数据库的升级,在数据库中,我们成功地实现了数据传播,在数据库到数据库中,在数据库中,在数据库中,在数据库中,在数据库中,在数据库中,在数据库域域域域域域域域间实现了。

1
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关资讯
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员