We study the numerical approximation of advection-diffusion equations with highly oscillatory coefficients and possibly dominant advection terms by means of the Multiscale Finite Element Method. The latter method is a now classical, finite element type method that performs a Galerkin approximation on a problem-dependent basis set, itself pre-computed in an offline stage. The approach is implemented here using basis functions that locally resolve both the diffusion and the advection terms. Variants with additional bubble functions and possibly weak inter-element continuity are proposed. Some theoretical arguments and a comprehensive set of numerical experiments allow to investigate and compare the stability and the accuracy of the approaches. The best approach constructed is shown to be adequate for both the diffusion- and advection-dominated regimes, and does not rely on an auxiliary stabilization parameter that would have to be properly adjusted.
翻译:暂无翻译