In recent years, Scientific Machine Learning (SciML) methods for solving partial differential equations (PDEs) have gained increasing popularity. Within such a paradigm, Physics-Informed Neural Networks (PINNs) are novel deep learning frameworks for solving initial-boundary value problems involving nonlinear PDEs. Recently, PINNs have shown promising results in several application fields. Motivated by applications to gas filtration problems, here we present and evaluate a PINN-based approach to predict solutions to $strongly\,\,degenerate\,\,parabolic\,\,problems\,\,with\,\,asymptotic\,\,structure\,\,of\,\,Laplacian\,\,type$. To the best of our knowledge, this is one of the first papers demonstrating the efficacy of the PINN framework for solving such kind of problems. In particular, we estimate an appropriate approximation error for some test problems whose analytical solutions are fortunately known. The numerical experiments discussed include two and three-dimensional spatial domains, emphasizing the effectiveness of this approach in predicting accurate solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员