Legged robots have excellent terrestrial mobility for traversing diverse environments and thus have the potential to be deployed in a wide variety of scenarios. However, they are susceptible to falling and leg malfunction during locomotion. Although the use of a large number of legs can overcome these problems, it makes the body long and leads to many contact legs being constrained on the ground to support the long body, which impedes maneuverability. To improve the locomotion maneuverability of the robots, the present study focuses on dynamic instability, which induces rapid and large movement changes, and uses a 12-legged robot with flexible body axis. Our previous work found that the straight walk of the robot becomes unstable through Hopf bifurcation when the body axis flexibility is changed, which induces body undulations. Furthermore, we developed a simple controller based on the Hopf bifurcation and showed that the straight walk instability facilitates the turning of the robot. In this study, we newly found that the straight walk becomes unstable through pitchfork bifurcation when the body-axis flexibility is changed in a different way from that in our previous work. The pitchfork bifurcation not only induces the straight walk instability but also the transition into the curved walk, whose curvature can be controlled by the body-axis flexibility. We developed a simple controller based on the pitchfork-bifurcation characteristics and demonstrated that the robot can perform a turning maneuver superior to the previous controller based on the Hopf bifurcation. This study provides a novel design principle for maneuverable locomotion of many-legged robots using intrinsic dynamic properties.
翻译:腿上的机器人在陆地上移动性极强,可以穿行不同的环境,因此有可能在多种情况中部署。 但是,在移动期间,它们很容易跌落和腿部故障。 虽然使用大量腿可以克服这些问题,但它会使身体长,导致许多接触腿在地面上受到限制,以支持长的体形,从而妨碍机动性。为了改善机器人的移动可操作性,本项研究侧重于动态不稳定,这会引起快速和大规模移动变化,并使用带有灵活体轴的12条腿型机器人。我们以前的工作发现,在改变体轴灵活性时,机器人的直行会通过Hopf 双步式设计变得不稳定,从而导致身体不协调。此外,我们根据Hopf 的两步形结构发展了一个简单的控制控制器,表明直行的行不稳有利于机器人的旋转。在这项研究中,当身体轴轴动的灵活性在与我们先前的工作不同的情况下被改变时,我们发现直行的机器人直行会变得不稳。 硬式的双行原则在旋转的轨道上演进, 直曲的轨道上, 也只能通过前项的旋转的轨道进行直行进, 。 直行进的轨道的轨道上, 直向的轨道的轨道的轨道上,, 直行进的轨道的轨道的轨道的轨道, 也只能制的轨道,, 以前行进, 直行进, 直向, 以前行进可以让的轨道的轨道的轨道的轨道,, 向, 直向, 直向, 直向可以使以前行进, 向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向, 直向,