Standard Federated Learning (FL) techniques are limited to clients with identical network architectures. This restricts potential use-cases like cross-platform training or inter-organizational collaboration when both data privacy and architectural proprietary are required. We propose a new FL framework that accommodates heterogeneous client architecture by adopting a graph hypernetwork for parameter sharing. A property of the graph hyper network is that it can adapt to various computational graphs, thereby allowing meaningful parameter sharing across models. Unlike existing solutions, our framework does not limit the clients to share the same architecture type, makes no use of external data and does not require clients to disclose their model architecture. Compared with distillation-based and non-graph hypernetwork baselines, our method performs notably better on standard benchmarks. We additionally show encouraging generalization performance to unseen architectures.
翻译:标准联邦学习(FL)技术仅限于具有相同网络架构的客户,这限制了跨平台培训或组织间合作等潜在使用案例,如在需要数据隐私和建筑专有性的情况下,这限制了跨平台培训或组织间合作。我们提议一个新的FL框架,通过采用图示超高网络共享参数来容纳多种客户架构。图超高网络的一个属性是它能够适应各种计算图,从而允许不同模型之间有意义的共享参数。与现有的解决方案不同,我们的框架并不限制客户共享相同的架构类型,不使用外部数据,也不要求客户披露其模型架构。与基于蒸馏和非图形的超网络基线相比,我们的方法在标准基准上表现得特别好。我们还展示了鼓励对看不见架构进行概括化的绩效。