Esports, a sports competition using video games, has become one of the most important sporting events in recent years. Although the amount of esports data is increasing than ever, only a small fraction of those data accompanies text commentaries for the audience to retrieve and understand the plays. Therefore, in this study, we introduce a task of generating game commentaries from structured data records to address the problem. We first build a large-scale esports data-to-text dataset using structured data and commentaries from a popular esports game, League of Legends. On this dataset, we devise several data preprocessing methods including linearization and data splitting to augment its quality. We then introduce several baseline encoder-decoder models and propose a hierarchical model to generate game commentaries. Considering the characteristics of esports commentaries, we design evaluation metrics including three aspects of the output: correctness, fluency, and strategic depth. Experimental results on our large-scale esports dataset confirmed the advantage of the hierarchical model, and the results revealed several challenges of this novel task.
翻译:Esports是一个使用电子游戏的体育竞赛,近年来已成为最重要的体育活动之一。尽管ESports数据的数量比以往增加,但这些数据中只有一小部分是随着文本评论为观众检索和理解剧本而提供的,因此,在本研究中,我们引入了一项任务,从结构化的数据记录中产生游戏评论,以解决这一问题。我们首先利用流行的ESports游戏“传说联盟”的结构化数据和评论建立一个大型 ESports数据对文本数据集。在这个数据集中,我们设计了几种预处理方法,包括线性化和数据分离,以提高其质量。我们随后引入了几种基线编码-解码模型模型,并提出了一个生成游戏评论的等级模型。考虑到 ESports评论的特性,我们设计了包括产出的三个方面的评价指标:正确性、流利度和战略深度。我们大型ESports数据集的实验结果证实了等级模型的优势,以及这项新任务的一些挑战。