In the distributional Twenty Questions game, Bob chooses a number $x$ from $1$ to $n$ according to a distribution $\mu$, and Alice (who knows $\mu$) attempts to identify $x$ using Yes/No questions, which Bob answers truthfully. Her goal is to minimize the expected number of questions. The optimal strategy for the Twenty Questions game corresponds to a Huffman code for $\mu$, yet this strategy could potentially uses all $2^n$ possible questions. Dagan et al. constructed a set of $1.25^{n+o(n)}$ questions which suffice to construct an optimal strategy for all $\mu$, and showed that this number is optimal (up to sub-exponential factors) for infinitely many $n$. We determine the optimal size of such a set of questions for all $n$ (up to sub-exponential factors), answering an open question of Dagan et al. In addition, we generalize the results of Dagan et al. to the $d$-ary setting, obtaining similar results with $1.25$ replaced by $1 + (d-1)/d^{d/(d-1)}$.
翻译:在20号分配问题游戏中,Bob选择了一个数字x美元,从1美元到10美元不等,根据分配额$ mu美元,而Alice(知道$$mu$)试图用是/不问题来确定$x美元,Bob诚实地回答这些问题。她的目标是尽量减少预期的问题数量。20号问题游戏的最佳战略相当于Huffman代码$=mu美元,但这一战略可能使用所有可能的问题。Dagan et al. 设计了一套1.25美元的问题,足以为所有$/mu美元制定最佳战略,并表明这个数字是最佳的(最高为次级例外因素),无限多美元。我们决定了所有美元(最高为次级例外因素)这类问题的最佳规模,回答Dagan 等人的公开问题。此外,我们将Dagan et al 的结果概括到美元设置中,以1美元+d-1美元(d-1美元)/d-1美元取代类似的结果。