Modern technologies are generating ever-increasing amounts of data. Making use of these data requires methods that are both statistically sound and computationally efficient. Typically, the statistical and computational aspects are treated separately. In this paper, we propose an approach to entangle these two aspects in the context of regularized estimation. Applying our approach to sparse and group-sparse regression, we show that it can improve on standard pipelines both statistically and computationally.
翻译:现代技术正在产生越来越多的数据。 利用这些数据需要既符合统计要求又符合计算效率的方法。 典型地,统计和计算方面是分开处理的。 在本文中,我们提议了一种方法,将这两个方面结合到定期估算的范围内。我们运用我们的方法处理稀疏和群体偏差的回归,我们表明它可以在统计和计算两方面改进标准管道。