This paper develops a new empirical Bayesian inference algorithm for solving a linear inverse problem given multiple measurement vectors (MMV) of under-sampled and noisy observable data. Specifically, by exploiting the joint sparsity across the multiple measurements in the sparse domain of the underlying signal or image, we construct a new support informed sparsity promoting prior. Several applications can be modeled using this framework, and as a prototypical example we consider reconstructing an image from synthetic aperture radar (SAR) observations using nearby azimuth angles. Our numerical experiments demonstrate that using this new prior not only improves accuracy of the recovery, but also reduces the uncertainty in the posterior when compared to standard sparsity producing priors.


翻译:本文开发了一种新的经验性贝叶斯推论算法, 用于解决线性反问题, 给出了抽样不足和吵闹的可观测数据的多度测量矢量( MMV ) 。 具体地说, 我们通过在基本信号或图像的稀疏领域利用多度测量的共聚性, 构建了一种新的支持支持性、 知情的宽度, 从而提前推广。 一些应用可以使用这个框架建模, 并且作为一个原始例子, 我们考虑利用附近方位角从合成孔径雷达(SAR)观测中重建图像。 我们的数字实验表明, 使用这个新先期不仅提高了恢复的准确性, 而且还降低了远地点的不确定性, 与生成前题的标准宽度相比 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员