Event Studies (ES) are statistical tools that assess whether a particular event of interest has caused changes in the level of one or more relevant time series. We are interested in ES applied to multivariate time series characterized by high spatial (cross-sectional) and temporal dependence. We pursue two goals. First, we propose to extend the existing taxonomy on ES, mainly deriving from the financial field, by generalizing the underlying statistical concepts and then adapting them to the time series analysis of airborne pollutant concentrations. Second, we address the spatial cross-sectional dependence by adopting a twofold adjustment. Initially, we use a linear mixed spatio-temporal regression model (HDGM) to estimate the relationship between the response variable and a set of exogenous factors, while accounting for the spatio-temporal dynamics of the observations. Later, we apply a set of sixteen ES test statistics, both parametric and nonparametric, some of which directly adjusted for cross-sectional dependence. We apply ES to evaluate the impact on NO2 concentrations generated by the lockdown restrictions adopted in the Lombardy region (Italy) during the COVID-19 pandemic in 2020. The HDGM model distinctly reveals the level shift caused by the event of interest, while reducing the volatility and isolating the spatial dependence of the data. Moreover, all the test statistics unanimously suggest that the lockdown restrictions generated significant reductions in the average NO2 concentrations.
翻译:事件研究(ES)是统计工具,用来评估某一特定感兴趣的事件是否造成一个或多个相关时间序列水平的变化。我们感兴趣的是ES应用到具有高度空间(跨部门)和时间依赖性的多变时间序列。我们追求两个目标。首先,我们提议扩大ES的现有分类,主要来自金融领域,通过概括基本统计概念,然后根据对空气中污染物浓度的时间序列分析对其进行调整。第二,我们通过双重调整处理空间跨部门依赖性,处理空间跨部门依赖性,首先,我们使用线性混合时空回归模型(HDGM)来估计反应变量和一系列外源因素之间的关系,同时考虑观测的空洞-时动态。随后,我们采用一套16种ES测试统计数据,其中一部分来自金融领域,有些则直接根据跨部门依赖性调整。我们采用ES来评估在Lombardy区域(意大利)在2020年COVID-19大流行期间采取的锁定限制对NO2浓度的影响。我们使用线性混合时回归模型(HGM)来估计反应变量和一系列外源因素之间的关系,同时计算观察观察的随机-时间动态动态动态动态动态动态动态动态。我们采用一套16种经济测试统计数据,其中的参数,其中部分直接调整。我们使用ESEDM标准评估了2020年所有水平稳定水平,以稳定水平,这导致了20度数据水平变化。