Lloyd S. Shapley \cite{Shapley1953a, Shapley1953} introduced a set of axioms in 1953, now called the {\em Shapley axioms}, and showed that the axioms characterize a natural allocation among the players who are in grand coalition of a {\em cooperative game}. Recently, \citet{StTe2019} showed that a cooperative game can be decomposed into a sum of {\em component games}, one for each player, whose value at the grand coalition coincides with the {\em Shapley value}. The component games are defined by the solutions to the naturally defined system of least squares linear equations via the framework of the {\em Hodge decomposition} on the hypercube graph. In this paper we propose a new set of axioms which characterizes the component games given by Stern and Tettenhorst, thereby suggesting that the component values for every coalition state may also serve for a valid measure of fair allocation among the players in each coalition. Our axioms may be seen as a completion of Shapley's in view of this characterization of the Hodge-theoretic component games. In addition, we provide a path integral representation of the component games which may be seen as an extension of the {\em Shapley formula}.
翻译:Lloyd S. Shapley\ cite{Shapley1953a, Shapley1953} 于1953年引入了一套正数, 现在称为 ~ ~ Shapley axiom}, 并显示在超立方图中, 球玩者之间自然分配的方程式。 最近, Shapley S. Shapley\ cite{Shapley1953a, Shapley1953} 显示, 合作游戏可以分解成一个组合游戏的总和, 每个球玩者在大型联盟中的价值与 ~ ~ Shapley 值相吻合。 组合游戏的组成由自然定义的最小正方形线性方形方程式的解决方案来定义, 在超立方形图中, 我们提出一套新的xiomomysical 游戏的组合组合组合, 可能是我们所看到的“ 方向” 的一部分 。