Lloyd S. Shapley \cite{Shapley1953a, Shapley1953} introduced a set of axioms in 1953, now called the {\em Shapley axioms}, and showed that the axioms characterize a natural allocation among the players who are in grand coalition of a {\em cooperative game}. Recently, \citet{StTe2019} showed that a cooperative game can be decomposed into a sum of {\em component games}, one for each player, whose value at the grand coalition coincides with the {\em Shapley value}. The component games are defined by the solutions to the naturally defined system of least squares linear equations via the framework of the {\em Hodge decomposition} on the hypercube graph. In this paper we propose a new set of axioms which characterizes the component games given by Stern and Tettenhorst, thereby suggesting that the component values for every coalition state may also serve for a valid measure of fair allocation among the players in each coalition. Our axioms may be seen as a completion of Shapley's in view of this characterization of the Hodge-theoretic component games. In addition, we provide a path integral representation of the component games which may be seen as an extension of the {\em Shapley formula}.


翻译:Lloyd S. Shapley\ cite{Shapley1953a, Shapley1953} 于1953年引入了一套正数, 现在称为 ~ ~ Shapley axiom}, 并显示在超立方图中, 球玩者之间自然分配的方程式。 最近, Shapley S. Shapley\ cite{Shapley1953a, Shapley1953} 显示, 合作游戏可以分解成一个组合游戏的总和, 每个球玩者在大型联盟中的价值与 ~ ~ Shapley 值相吻合。 组合游戏的组成由自然定义的最小正方形线性方形方程式的解决方案来定义, 在超立方形图中, 我们提出一套新的xiomomysical 游戏的组合组合组合, 可能是我们所看到的“ 方向” 的一部分 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
18+阅读 · 2021年7月11日
专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
Arxiv
0+阅读 · 2021年9月16日
VIP会员
相关资讯
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员