Renting servers in the cloud is a generalization of the bin packing problem, motivated by job allocation to servers in cloud computing applications. Jobs arrive in an online manner, and need to be assigned to servers; their duration and size are known at the time of arrival. There is an infinite supply of identical servers, each having one unit of computational capacity per unit of time. A server can be rented at any time and continues to be rented until all jobs assigned to it finish. The cost of an assignment is the sum of durations of rental periods of all servers. The goal is to assign jobs to servers to minimize the overall cost while satisfying server capacity constraints. We focus on analyzing two natural algorithms, NextFit and FirstFit, for the case of jobs of equal duration. It is known that the competitive ratio of NextFit and FirstFit are at most 3 and 4 respectively for this case. We prove a tight bound of 2 on the competitive ratio of NextFit. For FirstFit, we establish a lower bound of 2.519 on the competitive ratio, even when jobs have only two distinct arrival times. For the case when jobs have arrival times 0 and 1 and duration 2, we show a lower bound of 1.89 and an upper bound of 2 on the strict competitive ratio of FirstFit. Finally, using the weight function technique, we obtain stronger results for the case of uniform servers.


翻译:云层中租赁服务器是垃圾包装问题的概括化,其动机是将工作分配到云计算应用程序中的服务器上。工作以在线方式到达,需要分配到服务器;工作期限和规模在到达时是已知的。有无限的相同服务器供应,每个服务器都有单位单位的计算能力。服务器可以随时租赁,并继续租赁,直到分配给它的所有工作完成为止。任务费用是所有服务器的租赁期限的总和。任务的目的是为服务器分配工作,以便在满足服务器容量限制的同时最大限度地降低总成本。我们侧重于分析两种自然算法,即“下一个Fit”和“第一Fit”,以同等期限的工作为例。已知“下Fit”和“第一FiFit”的竞争性比重最多分别为3和4。我们证明,“下一个Fiet Fit”的竞争性比重大约为2,我们用最强的1和最强的2,我们用最强的SiFior Servicle 来显示“最强的1”和最强的Servicle 。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2017年10月17日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2017年10月17日
Top
微信扫码咨询专知VIP会员