Temporal computing promises to mitigate the stringent area constraints and clock distribution overheads of traditional superconducting digital computing. To design a scalable, area- and power-efficient superconducting network on chip (NoC), we propose packet-switched superconducting temporal NoC (PaST-NoC). PaST-NoC operates its control path in the temporal domain using race logic (RL), combined with bufferless deflection flow control to minimize area. Packets encode their destination using RL and carry a collection of data pulses that the receiver can interpret as pulse trains, RL, serialized binary, or other formats. We demonstrate how to scale up PaST-NoC to arbitrary topologies based on 2x2 routers and 4x4 butterflies as building blocks. As we show, if data pulses are interpreted using RL, PaST-NoC outperforms state-of-the-art superconducting binary NoCs in throughput per area by as much as 5X for long packets.
翻译:时间计算有望减轻传统超导数字计算(NOC)的严格区域限制和时钟分布管理。 要设计一个可缩放、面积和电能高效的芯片超导网络(NOC), 我们提议使用包开的超导时时空NOC(PAST- NOC)。 PaST- NoC使用种族逻辑(RL)在时间范围内运行其控制路径, 并结合无缓冲偏移流控制以最小化区域。 容器使用 RL( RL) 编码其目的地, 并携带一系列数据脉冲, 接收器可以将这些数据脉冲解读为脉冲列、 RL、 序列化二进制或其他格式。 我们展示了如何将PAST- NOC提升为基于 2x2 路由和 4x4 蝴蝶作为建筑块的任意型结构。 如我们所示, 如果数据脉冲被解释使用 RL( RL), 帕ST- NOC 将状态的超导二进流控制以最小区域, 最多5X 。