This is a review of asymptotic and non-asymptotic behaviour of Bayesian methods under model specification. In particular we focus on consistency, i.e. convergence of the posterior distribution to the point mass at the best parametric approximation to the true model, and conditions for it to be locally Gaussian around this point. For well specified regular models, variance of the Gaussian approximation coincides with the Fisher information, making Bayesian inference asymptotically efficient. In this review, we discuss how this is affected by model misspecification. We also discuss approaches to adjust Bayesian inference to make it asymptotically efficient under model misspecification.
翻译:这是对Bayesian方法在示范规格下无症状和非症状行为的审查。 我们特别侧重于一致性, 即后方分布与点质量的结合, 以最佳参数近似值与真实模型相近, 以及它在此点周围成为本地高斯人的条件。 对于明确规定的常规模型来说, Gausian 近似值的差异与渔业信息相吻合, 这使得Bayesian 推论无症状效率。 在本次审查中, 我们讨论了模型误差如何影响这一点。 我们还讨论了调整Bayesian 推论的方法, 以使其在模型误差下具有无症状效率。