We study a semi-/nonparametric regression model with a general form of nonclassical measurement error in the outcome variable. We show equivalence of this model to a generalized regression model. Our main identifying assumptions are a special regressor type restriction and monotonicity in the nonlinear relationship between the observed and unobserved true outcome. Nonparametric identification is then obtained under a normalization of the unknown link function, which is a natural extension of the classical measurement error case. We propose a novel sieve rank estimator for the regression function and establish its rate of convergence. In Monte Carlo simulations, we find that our estimator corrects for biases induced by nonclassical measurement error and provides numerically stable results. We apply our method to analyze belief formation of stock market expectations with survey data from the German Socio-Economic Panel (SOEP) and find evidence for nonclassical measurement error in subjective belief data.


翻译:我们研究的是半/非参数回归模型,其结果变量中一般形式的非古典测量错误。我们显示了该模型与普遍回归模型的等同性。我们的主要识别假设是观测到和未观测到的真实结果之间非线性关系中一种特殊的递减型限制和单一性。然后在未知联系功能的正常化下获得非对称识别,这是古典测量错误案例的自然延伸。我们建议为回归函数提供一个新型的筛选等级估计器,并确立其趋同率。在蒙特卡洛模拟中,我们发现我们的估计器纠正了非古典测量错误引起的偏差,并提供了数字稳定的结果。我们用德国社会经济小组(SOEP)的调查数据来分析股票市场预期的信念形成,并在主观信仰数据中找到非古典测量错误的证据。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员