Hybrid crowd-machine classifiers can achieve superior performance by combining the cost-effectiveness of automatic classification with the accuracy of human judgment. This paper shows how crowd and machines can support each other in tackling classification problems. Specifically, we propose an architecture that orchestrates active learning and crowd classification and combines them in a virtuous cycle. We show that when the pool of items to classify is finite we face learning vs. exploitation trade-off in hybrid classification, as we need to balance crowd tasks optimized for creating a training dataset with tasks optimized for classifying items in the pool. We define the problem, propose a set of heuristics and evaluate the approach on three real-world datasets with different characteristics in terms of machine and crowd classification performance, showing that our active hybrid approach significantly outperforms baselines.
翻译:混合式人群- 机械分类器可以通过将自动分类的成本效益与人类判断的准确性结合起来实现优异性能。 本文展示了人群和机器如何在解决分类问题时相互支持。 具体地说, 我们提议了一个结构, 来协调积极的学习和人群分类,并将它们结合到良性循环中。 我们显示,当需要分类的项目数量有限时,我们面对的是学习与混合式分类中的剥削权衡,因为我们需要平衡为创建培训数据集而优化的人群任务与为对集合式项目进行分类而优化的任务。 我们定义了问题,提出了一套超常学,并评估了在机器和人群分类性能方面具有不同特点的三个真实世界数据集的方法, 表明我们积极的混合式方法大大超越了基线。