Sharding is a promising technique for addressing the scalability issues of blockchain, and this technique is especially important for IoT, edge, or mobile computing. It divides the $n$ participating nodes into $s$ disjoint groups called shards, where each shard processes transactions in parallel. We examine batch scheduling problems on the shard graph $G_s$, where we find efficient schedules for a set of transactions. First, we present a centralized scheduler where one of the shards is considered as a leader, who receives the transaction information from all of the other shards and determines the schedule to process the transactions. For general graphs, where a transaction and its accessing objects are arbitrarily far from each other with a maximum distance $d$, the centralized scheduler provides $O(kd)$ approximation to the optimal schedule, where $k$ is the maximum number of shards each transaction accesses. Next, we provide a centralized scheduler with a bucketing approach that offers improved bounds for the case where $G_s$ is a line graph, or the $k$ objects are randomly selected. Finally, we provide a distributed scheduler where shards do not require global transaction information. We achieve this by using a hierarchical clustering of the shards and using the centralized scheduler in each cluster. We show that the distributed scheduler has a competitive ratio of $O(A_{CS} \cdot \log d \cdot \log s)$, where $A_{CS}$ is the approximation ratio of the centralized scheduler. To our knowledge, we are the first to give provably fast transaction scheduling algorithms for blockchain sharding systems. We also present simulation results for our schedulers and compare their performance with a lock-based approach. The results show that our schedulers are generally better with up to 3x lower latency and 2x higher throughput.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年3月27日
Arxiv
0+阅读 · 2025年3月26日
Arxiv
0+阅读 · 2025年3月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2025年3月27日
Arxiv
0+阅读 · 2025年3月26日
Arxiv
0+阅读 · 2025年3月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员