We study the finite sample behavior of Lasso-based inference methods such as post double Lasso and debiased Lasso. We show that these methods can exhibit substantial omitted variable biases (OVBs) due to Lasso not selecting relevant controls. This phenomenon can occur even when the coefficients are sparse and the sample size is large and larger than the number of controls. Therefore, relying on the existing asymptotic inference theory can be problematic in empirical applications. We compare the Lasso-based inference methods to modern high-dimensional OLS-based methods and provide practical guidance.


翻译:我们研究了基于激光索的推理方法(如后双激光索和下偏向激光索)的有限抽样行为。我们表明,由于激光索没有选择相关控制,这些方法可以显示大量省略的可变偏差(OVBs ) 。即使系数稀少,抽样大小大于控制数量,这种现象也可能发生。因此,在经验应用中,依赖现有的无反应推理理论可能会产生问题。我们将基于激光索的推理方法与基于现代高维的OSLS的方法进行比较,并提供实用的指导。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
专知会员服务
62+阅读 · 2020年3月4日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员