The task of item recommendation is to select the best items for a user from a large catalogue of items. Item recommenders are commonly trained from implicit feedback which consists of past actions that are positive only. Core challenges of item recommendation are (1) how to formulate a training objective from implicit feedback and (2) how to efficiently train models over a large item catalogue. This article provides an overview of item recommendation, its unique characteristics and some common approaches. It starts with an introduction to the problem and discusses different training objectives. The main body deals with learning algorithms and presents sampling based algorithms for general recommenders and more efficient algorithms for dot product models. Finally, the application of item recommenders for retrieval tasks is discussed.


翻译:项目建议的任务是从大型项目目录中为用户选择最佳项目。项目建议者通常通过包含过去仅是正面行动的隐含反馈接受培训。项目建议的核心挑战是:(1) 如何从隐含反馈中制定培训目标,(2) 如何在大型项目目录中有效培训模型。本条概述了项目建议、其独特特点和一些共同做法。首先介绍问题并讨论不同的培训目标。主要机构处理一般建议者的学习算法,并介绍基于抽样的算法和基于点产品模型的更高效算法。最后,讨论了项目建议者在检索任务中的应用问题。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Top
微信扫码咨询专知VIP会员