The acquisition of Antimicrobial Multidrug Resistance (AMR) in patients admitted to the Intensive Care Units (ICU) is a major global concern. This study analyses data in the form of multivariate time series (MTS) from 3476 patients recorded at the ICU of University Hospital of Fuenlabrada (Madrid) from 2004 to 2020. 18\% of the patients acquired AMR during their stay in the ICU. The goal of this paper is an early prediction of the development of AMR. Towards that end, we leverage the time-series cluster kernel (TCK) to learn similarities between MTS. To evaluate the effectiveness of TCK as a kernel, we applied several dimensionality reduction techniques for visualization and classification tasks. The experimental results show that TCK allows identifying a group of patients that acquire the AMR during the first 48 hours of their ICU stay, and it also provides good classification capabilities.
翻译:2004年至2020年,在Fuenlabrada大学医院(马德里)的ICU记录了3476名病人,本研究以多变时间序列的形式分析了从2004年至2020年在Fuenlabrada大学医院(马德里)的ICU记录到的3476名病人获得的抗微生物多药抗药性(AMR)数据。 18 ⁇ 患者在在在ICU逗留期间获得的抗微生物抗药性(AMR)。本文件的目标是早期预测AMR的发展情况。为此,我们利用时序集群内核(TCK)了解MTS之间的相似之处。为了评估TCK作为内核的效力,我们应用了几种减少维度技术来进行可视化和分类任务。实验结果表明,TCK允许识别在ICU逗留前48小时内获得AMR的一组病人,并且提供了良好的分类能力。