Clinical notes are an essential component of a health record. This paper evaluates how natural language processing (NLP) can be used to identify the risk of acute care use (ACU) in oncology patients, once chemotherapy starts. Risk prediction using structured health data (SHD) is now standard, but predictions using free-text formats are complex. This paper explores the use of free-text notes for the prediction of ACU instead of SHD. Deep Learning models were compared to manually engineered language features. Results show that SHD models minimally outperform NLP models; an l1-penalised logistic regression with SHD achieved a C-statistic of 0.748 (95%-CI: 0.735, 0.762), while the same model with language features achieved 0.730 (95%-CI: 0.717, 0.745) and a transformer-based model achieved 0.702 (95%-CI: 0.688, 0.717). This paper shows how language models can be used in clinical applications and underlines how risk bias is different for diverse patient groups, even using only free-text data.
翻译:临床笔记是健康记录的重要组成部分。本文评估自然语言处理(NLP)如何用于识别肿瘤学患者在化疗开始后的急救护理风险,并探讨使用自由文本格式进行急救护理使用(ACU)的预测,而不是使用结构化健康数据(SHD)进行预测。预测使用SHD的风险是标准,但使用自由文本格式的预测则较为复杂。本文探讨如何利用自由文本笔记预测ACU。将深度学习模型与手动构建的语言特征进行了比较。结果显示,SHD模型仅略胜过NLP模型;具有SHD的L1惩罚逻辑回归模型的C统计量为0.748(95%-CI: 0.735,0.762),而具有语言特征的同一模型为0.730(95%-CI: 0.717,0.745),基于transformer的模型为0.702(95%-CI: 0.688,0.717)。本文展示了语言模型如何用于临床应用,并强调了即使仅使用自由文本数据,风险偏差也在不同的患者群体之间有所不同。