It is a useful fact in classical computer science that many search problems are reducible to decision problems; this has led to decision problems being regarded as the $\textit{de facto}$ computational task to study in complexity theory. In this work, we explore search-to-decision reductions for quantum search problems, wherein a quantum algorithm makes queries to a classical decision oracle to output a desired quantum state. In particular, we focus on search-to-decision reductions for $\mathsf{QMA}$, and show that there exists a quantum polynomial-time algorithm that can generate a witness for a $\mathsf{QMA}$ problem up to inverse polynomial precision by making one query to a $\mathsf{PP}$ decision oracle. We complement this result by showing that $\mathsf{QMA}$-search does $\textit{not}$ reduce to $\mathsf{QMA}$-decision in polynomial-time, relative to a quantum oracle. We also explore the more general $\textit{state synthesis problem}$, in which the goal is to efficiently synthesize a target state by making queries to a classical oracle encoding the state. We prove that there exists a classical oracle with which any quantum state can be synthesized to inverse polynomial precision using only one oracle query and to inverse exponential precision using two oracle queries. This answers an open question of Aaronson from 2016, who presented a state synthesis algorithm that makes $O(n)$ queries to a classical oracle to prepare an $n$-qubit state, and asked if the query complexity could be made sublinear.
翻译:古典计算机科学的一个有用事实是, 许多搜索问题可以被简化为决策问题; 这导致将决定问题视为在复杂理论中研究的计算任务 $\ textit{ deactual} 美元。 在这项工作中, 我们探索量子搜索问题的搜索到决定的减少, 通过量子算法查询一个古典决定或奇迹来输出一个想要的量子状态。 特别是, 我们注重的是对于$\ mathsf{ MA} 的搜索到决定的减少。 并且显示存在一个量子数多元时间的计算法, 它可以产生一个美元 美元 的计算结果, 通过对 $\ mathfsf{ {deactuffa} 的决定进行查询, 到 美元 美元 的计算结果。 我们还可以探索一个更普通的 美元 美元 的 美元, 到 美元 美元 的 的, 到 美元 美元 的 。 或 美元 美元 的 直径直径的 值 的 的 。 我们可以用一个 的 目标 或 状态 合成 来分析 。