We present eigenvalue decay estimates of integral operators associated with compositional dot-product kernels. The estimates improve on previous ones established for power series kernels on spheres. This allows us to obtain the volumes of balls in the corresponding reproducing kernel Hilbert spaces. We discuss the consequences on statistical estimation with compositional dot product kernels and highlight interesting trade-offs between the approximation error and the statistical error depending on the number of compositions and the smoothness of the kernels.
翻译:我们提出了与合成圆点产品内核相关的整体操作器机体衰减估计值,与以往为球体上电源序列内核所设定的估计数相比有所改进。这使我们能够获得相应的复制内核Hilbert空间的球量。我们用合成圆点产品内核讨论对统计估计的影响,并突出近似误差与统计误差之间的令人感兴趣的权衡取舍,这取决于组成数目和内核的平滑性。