We introduce a data-driven approach to building reduced dynamical models through manifold learning; the reduced latent space is discovered using Diffusion Maps (a manifold learning technique) on time series data. A second round of Diffusion Maps on those latent coordinates allows the approximation of the reduced dynamical models. This second round enables mapping the latent space coordinates back to the full ambient space (what is called lifting); it also enables the approximation of full state functions of interest in terms of the reduced coordinates. In our work, we develop and test three different reduced numerical simulation methodologies, either through pre-tabulation in the latent space and integration on the fly or by going back and forth between the ambient space and the latent space. The data-driven latent space simulation results, based on the three different approaches, are validated through (a) the latent space observation of the full simulation through the Nystr\"om Extension formula, or through (b) lifting the reduced trajectory back to the full ambient space, via Latent Harmonics. Latent space modeling often involves additional regularization to favor certain properties of the space over others, and the mapping back to the ambient space is then constructed mostly independently from these properties; here, we use the same data-driven approach to construct the latent space and then map back to the ambient space.
翻译:我们引入了一种数据驱动方法,通过多重学习来构建减少的动态模型; 在时间序列数据中,利用Difulmation Maps(一种多重学习技术),发现潜潜伏空间; 在这些潜伏坐标上,第二回合的Difulm 地图可以使减少的动态模型近似。 第二回合可以将潜伏空间坐标映射回到整个环境空间(即所谓的提升); 还可以通过减少的坐标将感兴趣的全部状态功能近似于完整状态。 在我们的工作中,我们制定和测试三种不同的减少的数字模拟方法,或者通过在潜伏空间进行预映射和整合,或者通过在潜伏空间和潜伏空间之间进行回转。 基于三种不同方法的数据驱动潜伏空间模拟结果,通过(a) 通过Nystr\'om扩展公式对全面模拟的潜在空间进行潜在空间观测,或者通过(b) 将减少的轨道从减少的坐标移回到整个环境空间空间。 低位空间模型往往涉及进一步调整,以有利于空间的某些特性,或者通过环境空间与潜伏空间之间的空间进行回和回空间的测绘,然后从我们在这里独立地构建这些空间的特性。