Determining the satisfiability of Boolean constraint-satisfaction problems with different types of constraints, that is hybrid constraints, is a well-studied problem with important applications. We study here a new application of hybrid Boolean constraints, which arises in quantum computing. The problem relates to constrained perfect matching in edge-colored graphs. While general-purpose hybrid constraint solvers can be powerful, we show that direct encodings of the constrained-matching problem as hybrid constraints scale poorly and special techniques are still needed. We propose a novel encoding based on Tutte's Theorem in graph theory as well as optimization techniques. Empirical results demonstrate that our encoding, in suitable languages with advanced SAT solvers, scales significantly better than a number of competing approaches on constrained-matching benchmarks. Our study identifies the necessity of designing problem-specific encodings when applying powerful general-purpose constraint solvers.


翻译:确定不同类型制约(即混合制约)的布利安抑制性满意度问题的相对性,是研究周密的重要应用问题。我们在此研究量计算中产生的混合布利安制约性新应用。问题在于边色图形中限制完美匹配。虽然通用混合制约解决器可能强大,但我们显示,仍需要将限制性匹配问题直接编码,因为混合制约规模差,特殊技术。我们提议在图表理论和优化技术中根据图特的理论进行新编码。经验性结果显示,我们用先进的SAT解算器的合适语言进行的编码比在限制匹配基准上的若干相互竞争的方法要好得多。我们的研究指出,在应用强大的通用制约解决器时,有必要设计针对特定问题的编码。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员