Best match graphs (BMGs) are vertex-colored directed graphs that were introduced to model the relationships of genes (vertices) from different species (colors) given an underlying evolutionary tree that is assumed to be unknown. In real-life applications, BMGs are estimated from sequence similarity data. Measurement noise and approximation errors usually result in empirically determined graphs that in general violate characteristic properties of BMGs. The arc modification problems for BMGs aim at correcting such violations and thus provide a means to improve the initial estimates of best match data. We show here that the arc deletion, arc completion and arc editing problems for BMGs are NP-complete and that they can be formulated and solved as integer linear programs. To this end, we provide a novel characterization of BMGs in terms of triples (binary trees on three leaves) and a characterization of BMGs with two colors in terms of forbidden subgraphs.


翻译:最佳匹配图(BMGs)是用于模拟不同物种(颜色)的基因(脊椎)关系的顶色定向图解,这些图解被引入以模拟不同物种(颜色)的基因(脊椎)的关系,这些基因的进化树假定是未知的。在实际应用中,BMGs是根据相近序列数据估算的。测量噪音和近似误差通常会产生经经验确定的图解,一般违反BMGs的特性。BMGs的弧形修改问题旨在纠正这种违规行为,从而提供一种手段改进最佳匹配数据的初步估计。我们在这里表明,BMGs的弧删除、弧完成和弧编辑问题是NP的,可以作为整形线性程序来拟订和解决。为此,我们提供了三重(三叶上的双胞树)的新的BMGs特征描述,以及在被禁止的子图谱中两种颜色的BMGs特征描述。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
53+阅读 · 2020年10月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年9月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
53+阅读 · 2020年10月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员