Brain computing interfaces (BCI) are used in a plethora of safety/privacy-critical applications, ranging from healthcare to smart communication and control. Wearable BCI setups typically involve a head-mounted sensor connected to a mobile device, combined with ML-based data processing. Consequently, they are susceptible to a multiplicity of attacks across the hardware, software, and networking stacks used that can leak users' brainwave data or at worst relinquish control of BCI-assisted devices to remote attackers. In this paper, we: (i) analyse the whole-system security and privacy threats to existing wearable BCI products from an operating system and adversarial machine learning perspective; and (ii) introduce Argus, the first information flow control system for wearable BCI applications that mitigates these attacks. Argus' domain-specific design leads to a lightweight implementation on Linux ARM platforms suitable for existing BCI use-cases. Our proof of concept attacks on real-world BCI devices (Muse, NeuroSky, and OpenBCI) led us to discover more than 300 vulnerabilities across the stacks of six major attack vectors. Our evaluation shows Argus is highly effective in tracking sensitive dataflows and restricting these attacks with an acceptable memory and performance overhead (<15%).
翻译:大脑计算界面(BCI)用于从保健到智能通信和控制等大量安全/隐私关键应用,从保健到智能通信和控制等许多安全/隐私关键应用。可穿式BCI设置通常涉及一个头顶传感器,与移动设备连接,并与基于 ML 的数据处理相结合。因此,它们很容易受到硬件、软件和网络式堆叠的多重攻击,这些堆叠可以将用户的脑波数据或最坏情况下对BCI辅助装置的弃置控制泄漏给远程攻击者。在本文中,我们:(一) 从操作系统和对抗性机器学习的角度分析现有可磨损的BCI产品受到的系统安全和隐私威胁;以及(二) 引入Argus,这是用于减轻这些攻击的可磨损 BCI 应用程序的第一个信息流通控制系统。Argus的域特定设计导致Linux ARM平台上实施轻量的操作,适合现有的 BCI 使用。我们对现实世界 BCI 设备(Muse、NuroSky和Open BCI) 进行概念攻击的证据使我们发现超过300个机堆的弱点;以及六种主要攻击性上/RABCI 有效跟踪。我们的评估显示这些可接受的敏感性数据。