Monte Carlo tests are widely used for computing valid p-values without requiring known distributions of test statistics. When performing multiple Monte Carlo tests, it is essential to maintain control of the type I error. Some techniques for multiplicity control pose requirements on the joint distribution of the p-values, for instance independence, which can be computationally intensive to achieve using naïve multiple Monte Carlo testing. We highlight in this work that multiple Monte Carlo testing is an instance of conformal novelty detection. Leveraging this insight enables a more efficient multiple Monte Carlo testing procedure, avoiding excessive simulations while still ensuring exact control over the false discovery rate or the family-wise error rate. We call this approach conformal multiple Monte Carlo testing. The performance is investigated in the context of global envelope tests for point pattern data through a simulation study and an application to a sweat gland data set. Results reveal that with a fixed number of simulations under the null hypothesis, our proposed method yields substantial improvements in power of the testing procedure as compared to the naïve multiple Monte Carlo testing procedure.
翻译:蒙特卡洛检验被广泛用于计算有效的p值,而无需已知检验统计量的分布。在执行多重蒙特卡洛检验时,控制I类错误至关重要。一些多重性控制技术对p值的联合分布提出了要求,例如独立性,这在使用朴素多重蒙特卡洛检验时计算量较大。本研究强调,多重蒙特卡洛检验是保形新颖性检测的一个实例。利用这一见解可以实现更高效的多重蒙特卡洛检验过程,避免过度模拟,同时仍确保对错误发现率或家族错误率的精确控制。我们将此方法称为保形多重蒙特卡洛检验。通过模拟研究和对汗腺数据集的应用,在点模式数据的全局包络检验背景下研究了其性能。结果表明,在零假设下固定模拟次数时,与朴素多重蒙特卡洛检验过程相比,我们提出的方法在检验过程的功效方面带来了显著提升。