The Bhatnagar-Gross-Krook (BGK) single-relaxation-time collision model for the Boltzmann equation serves as the foundation of the lattice BGK (LBGK) method developed in recent years. The description of the collision as a uniform relaxation process of the distribution function towards its equilibrium is, in many scenarios, simplistic. Based on a previous series of papers, we present a collision model formulated as independent relaxations of the irreducible components of the Hermit coefficients in the reference frame moving with the fluid. These components, corresponding to the irreducible representation of the rotation group, are the minimum tensor components that can be separately relaxed without violating rotation symmetry. For the 2nd, 3rd and 4th moments respectively, two, two and three independent relaxation rates can exist, giving rise to the shear and bulk viscosity, thermal diffusivity and some high-order relaxation process not explicitly manifested in the Navier-Stokes-Fourier equations. Using the binomial transform, the Hermite coefficients are evaluated in the absolute frame to avoid the numerical dissipation introduced by interpolation. Extensive numerical verification is also provided.


翻译:Bhatnagar-Gross-Krook(BGK) Boltzmann 方程式的单放松时间碰撞模型(BGK) 是近年来开发的 lattice BGK (LBGK) 方法的基础。 将碰撞描述为向平衡分布函数的统一放松过程在许多情况下是简单化的。 根据前一系列的论文, 我们提出一个碰撞模型, 是在参考框架中与流体移动的Hermit系数的不可复制组成部分的独立放松。 这些组成部分, 与轮用组不可减损的表示相对应, 是可以单独放松而不违反轮换对称的最起码的发声器组件。 对于第2、第3和第4个时刻, 可以分别存在2、第2、第3和第3个独立放松速度, 从而产生剪切和大体的粘度, 热diffusivity 和一些在纳维- Stokes- Fourier 方程式中没有明确显示的高度放松过程。 这些组成部分, 使用二元变换, Hermite 系数在绝对框架内被评估为避免数字间变换。 提供 。 数字化, 。 也通过提供 数字化。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员