The development of event extraction systems has been hindered by the absence of wide-coverage, large-scale datasets. To make event extraction systems more accessible, we build a general-purpose event detection dataset GLEN, which covers 3,465 different event types, making it over 20x larger in ontology than any current dataset. GLEN is created by utilizing the DWD Overlay, which provides a mapping between Wikidata Qnodes and PropBank rolesets. This enables us to use the abundant existing annotation for PropBank as distant supervision. In addition, we also propose a new multi-stage event detection model specifically designed to handle the large ontology size and partial labels in GLEN. We show that our model exhibits superior performance (~10% F1 gain) compared to both conventional classification baselines and newer definition-based models. Finally, we perform error analysis and show that label noise is still the largest challenge for improving performance.
翻译:事件提取系统的开发因缺少广泛覆盖的大型数据集而受阻。 为了使事件提取系统更容易进入,我们建立了一个通用事件检测数据集GLEN,该数据集覆盖了3,465种不同事件类型,使其在本体学上比任何现有数据集都大20倍以上。GLEN是利用DWD的重叠创建的,它提供了维基数据 Qnodes和PropBank角色之间的映射。这使我们能够使用现有的大量PropBank的注释作为远程监督。此外,我们还提出了一个新的多阶段事件检测模型,专门用于处理GLEN的大型肿瘤大小和部分标签。我们展示了我们的模型比常规分类基线和新定义模型都高的性能(~10% F1增益 ) 。最后,我们进行了错误分析,并显示标签噪音仍然是改进性能的最大挑战。</s>