Slate recommendation generates a list of items as a whole instead of ranking each item individually, so as to better model the intra-list positional biases and item relations. In order to deal with the enormous combinatorial space of slates, recent work considers a generative solution so that a slate distribution can be directly modeled. However, we observe that such approaches -- despite their proved effectiveness in computer vision -- suffer from a trade-off dilemma in recommender systems: when focusing on reconstruction, they easily over-fit the data and hardly generate satisfactory recommendations; on the other hand, when focusing on satisfying the user interests, they get trapped in a few items and fail to cover the item variation in slates. In this paper, we propose to enhance the accuracy-based evaluation with slate variation metrics to estimate the stochastic behavior of generative models. We illustrate that instead of reaching to one of the two undesirable extreme cases in the dilemma, a valid generative solution resides in a narrow "elbow" region in between. And we show that item perturbation can enforce slate variation and mitigate the over-concentration of generated slates, which expand the "elbow" performance to an easy-to-find region. We further propose to separate a pivot selection phase from the generation process so that the model can apply perturbation before generation. Empirical results show that this simple modification can provide even better variance with the same level of accuracy compared to post-generation perturbation methods.
翻译:Slate建议产生一个整体项目清单,而不是对每个项目进行单独排序,从而更好地模拟列表内位置偏差和项目关系。为了处理板块的巨大组合空间,最近的工作考虑了一个基因化解决方案,以便可以直接模拟板块分布。然而,我们注意到,这些方法 -- -- 尽管在计算机愿景方面已证明是有效的 -- -- 在建议系统中遇到一个权衡的两难境地:当侧重于重建时,它们很容易地过分适合数据,几乎不产生令人满意的建议;另一方面,当侧重于满足用户利益时,它们被困在少数项目中,无法涵盖项目变异性。在本文件中,我们提议加强基于准确性的评价,采用日期变异性指标来估计变异模型的变异性行为。我们指出,在两难的两种不可取的极端情况中,一种有效的变异性解决方案存在于一个狭窄的“elbow”区域之间。我们表明,在满足用户利益时,它们会被困在少数项目中,它们被困住,并且没有能够减少生成的变异性,甚至无法涵盖项目变异性的变化。我们提议将“快速的生成阶段”推算出一个“我们可以进一步显示的生成的生成过程”的方法,从而可以进一步显示“伸缩区域。