We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero.
翻译:我们建议采用联盟平均朗埃文算法(FA-LD)来对不确定性进行量化和对分布式客户进行平均预测。特别是,我们普遍采用超出正常的后端分布,并考虑一般的模型类别。我们为FA-LD制定了理论保障,以便与非i.i.d.数据和研究注射噪音和随机偏移噪音、数据的异质性以及不同的学习率如何影响趋同。这种分析为当地更新的最佳选择提供了线索,以尽量减少通信成本。我们的方法是,Langevin算法中注入的噪音不会使通信效率恶化。此外,我们在我们的FA-LD算法中检查了不同客户所使用的独立和相关噪音。我们观察到,在通信、准确性和数据保密性之间,对等对等之间存在着一种权衡。由于本地设备可能变得不活跃,因此我们还可以根据不同的平均计划显示趋同结果,因为只有局部的设备更新。在这种情况下,我们发现的额外偏差不会下降到零。