We propose EBLIME to explain black-box machine learning models and obtain the distribution of feature importance using Bayesian ridge regression models. We provide mathematical expressions of the Bayesian framework and theoretical outcomes including the significance of ridge parameter. Case studies were conducted on benchmark datasets and a real-world industrial application of locating internal defects in manufactured products. Compared to the state-of-the-art methods, EBLIME yields more intuitive and accurate results, with better uncertainty quantification in terms of deriving the posterior distribution, credible intervals, and rankings of the feature importance.


翻译:增强的贝叶斯局部可解释模型无关解释(EBLIME) 翻译后的摘要: 我们提出了EBLIME来解释黑盒机器学习模型并使用贝叶斯岭回归模型获得特征重要性分布。我们给出了贝叶斯框架的数学表达式和理论结果,包括岭参数的显著性。我们在基准数据集和一个实际的工业应用中进行了案例研究,该工业应用是用于定位制造产品的内部缺陷。与现有方法相比,EBLIME具有更直观和准确的结果,具有更好的不确定性量化,可以推导出后验分布、可信区间和特征重要性排名。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
20+阅读 · 2021年8月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员