We propose EBLIME to explain black-box machine learning models and obtain the distribution of feature importance using Bayesian ridge regression models. We provide mathematical expressions of the Bayesian framework and theoretical outcomes including the significance of ridge parameter. Case studies were conducted on benchmark datasets and a real-world industrial application of locating internal defects in manufactured products. Compared to the state-of-the-art methods, EBLIME yields more intuitive and accurate results, with better uncertainty quantification in terms of deriving the posterior distribution, credible intervals, and rankings of the feature importance.
翻译:增强的贝叶斯局部可解释模型无关解释(EBLIME)
翻译后的摘要:
我们提出了EBLIME来解释黑盒机器学习模型并使用贝叶斯岭回归模型获得特征重要性分布。我们给出了贝叶斯框架的数学表达式和理论结果,包括岭参数的显著性。我们在基准数据集和一个实际的工业应用中进行了案例研究,该工业应用是用于定位制造产品的内部缺陷。与现有方法相比,EBLIME具有更直观和准确的结果,具有更好的不确定性量化,可以推导出后验分布、可信区间和特征重要性排名。