Image view synthesis has seen great success in reconstructing photorealistic visuals, thanks to deep learning and various novel representations. The next key step in immersive virtual experiences is view synthesis of dynamic scenes. However, several challenges exist due to the lack of high-quality training datasets, and the additional time dimension for videos of dynamic scenes. To address this issue, we introduce a multi-view video dataset, captured with a custom 10-camera rig in 120FPS. The dataset contains 96 high-quality scenes showing various visual effects and human interactions in outdoor scenes. We develop a new algorithm, Deep 3D Mask Volume, which enables temporally-stable view extrapolation from binocular videos of dynamic scenes, captured by static cameras. Our algorithm addresses the temporal inconsistency of disocclusions by identifying the error-prone areas with a 3D mask volume, and replaces them with static background observed throughout the video. Our method enables manipulation in 3D space as opposed to simple 2D masks, We demonstrate better temporal stability than frame-by-frame static view synthesis methods, or those that use 2D masks. The resulting view synthesis videos show minimal flickering artifacts and allow for larger translational movements.
翻译:由于深层次的学习和各种新表现形式,图像合成在重建摄影现实视觉方面取得了巨大成功。在沉浸的虚拟经验的下一个关键步骤是观察动态场景的合成。然而,由于缺乏高质量的培训数据集,以及动态场景视频的额外时间层面,存在若干挑战。为了解决这个问题,我们引入了一个多视图视频数据集,以120FPS中的定制10摄像机设备拍摄。该数据集包含96个高品质的场景,显示各种视觉效应和户外场景中的人类互动。我们开发了一个新的算法,即深 3D遮罩卷,它使得能够从静态摄影机拍摄的动态场景的双向视频中进行时间性外推。我们的算法通过用3D面罩卷识别易出错区,用在整个视频中观测到的静态背景来取代这些错位区。我们的方法使得3D空间的操控比简单的2D面罩更能显示时间性更稳定,或者那些使用 2D 掩码的静态合成方法。由此产生的合成视频显示最小的闪动和允许更大的翻动。