We develop a probabilistic machine learning method, which formulates a class of stochastic neural networks by a stochastic optimal control problem. An efficient stochastic gradient descent algorithm is introduced under the stochastic maximum principle framework. Convergence analysis for stochastic gradient descent optimization and numerical experiments for applications of stochastic neural networks are carried out to validate our methodology in both theory and performance.
翻译:我们开发了一种概率机器学习方法,该方法通过一种随机最佳控制问题来形成一组随机神经网络。在随机最高原则框架之下引入了高效随机梯度梯度下降算法。 进行了随机梯度梯度下降优化和随机神经网络应用数字实验的趋同分析,以验证我们的理论和性能方法。