The classical, linear-time solvable Feedback Edge Set problem is concerned with finding a minimum number of edges intersecting all cycles in a (static, unweighted) graph. We provide a first study of this problem in the setting of temporal graphs, where edges are present only at certain points in time. We find that there are four natural generalizations of Feedback Edge Set, all of which turn out to be NP-hard. We also study the tractability of these problems with respect to several parameters (solution size, lifetime, and number of graph vertices, among others) and obtain some parameterized hardness but also fixed-parameter tractability results.
翻译:经典的线性可溶时反馈边缘问题涉及在(静态的、未加权的)图表中找到将所有周期交叉起来的最小边缘数。 我们在设定时间图时提供了对这一问题的首次研究, 时间图中边缘只存在于特定时间点。 我们发现反馈边缘有四种自然的概括, 全部结果都是NP硬的。 我们还研究这些问题在若干参数( 溶解大小、 寿命和图形顶点数等) 上的可移性, 并获得某些参数化的硬度, 但也获得了固定参数可移性结果 。