We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, where the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes from. Second, we use standard offline oracle instead of offline pair-oracle. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the two most popular diffusion models, the independent cascade (IC) and the linear threshold (LT) model. For the IC model, the past research only achieves edge-level feedback, while we present the first $\widetilde{O}(\sqrt{T})$-regret algorithm for the node-level feedback. Besides, the algorithm only invokes standard offline oracles. For the LT model, a recent study only provides an OIM solution that meets the first challenge but still requires a pair-oracle. In this paper, we apply a similar technique as in the IC model to replace the pair-oracle with a standard oracle while maintaining $\widetilde{O}(\sqrt{T})$-regret.


翻译:我们研究社交网络中的在线影响最大化(OIM)问题,在多轮中,学习者反复选择种子节点以生成级联,观察级联反馈,并逐渐学习产生最大级联的最佳种子。我们关注本文中的两大挑战。首先,我们以节点级反馈而不是边缘级反馈开展工作。边缘级反馈揭示了在级联中通过信息通过的所有边缘,节点反馈仅显示带有时间戳的激活节点。节点反馈可能比较现实,因为在实践中比较容易观察谁受到影响,但很难观察哪个关系(顶点)影响。第二,我们使用标准离线或触角而不是离线配对或触角。要为下一轮计算一个好的种子集合,离线配对在信任区域中找到最好的种子集点和最佳参数。在调点反馈中,只有对调点核心核心,但很难对调点核心进行比较。因此我们专注于如何使用标准离线的Order的反馈,在最远端端端端端端值上找到最佳的种子模型。

1
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
40+阅读 · 2020年9月6日
简明扼要!Python教程手册,206页pdf
专知会员服务
48+阅读 · 2020年3月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
已删除
将门创投
5+阅读 · 2018年6月7日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月31日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
40+阅读 · 2020年9月6日
简明扼要!Python教程手册,206页pdf
专知会员服务
48+阅读 · 2020年3月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
相关资讯
已删除
将门创投
5+阅读 · 2018年6月7日
Top
微信扫码咨询专知VIP会员