Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. In this paper, we prove that the bias of the multivariable IVW estimate is a product of weak instrument and estimation error biases, where the latter is linearly composed of measurement error and confounder biases with a trade-off due to sample overlap among multiple GWAS cohorts. To address this problem, we propose a novel multivariable MR approach, MR using Bias-corrected Estimating Equation (MRBEE), which can infer unbiased causal relationships with many weak IVs. Asymptotic behaviors of multivariable IVW and MRBEE are investigated under moderate conditions, showing that MRBEE outperforms multivariable IVW in terms of unbiasedness and asymptotic validity. We apply MRBEE to examine myopia and confirm that schooling and driving time are causal factors for myopia. A novel locus of myopia is identified in the subsequent whole-genome pleiotropy test.


翻译:转化摘要: Mendelian randomization(MR)是使用基因组关联研究(GWAS)概述数据推断暴露和结果之间因果关系的工具变量(IV)方法。然而,多变量逆方差加权(IVW)方法作为大多数MR方法的基础,在存在许多弱IV的情况下不能产生无偏因果效应估计值。在本文中,我们证明了多变量IVW估计值的偏差是弱工具和估计误差偏差的产物,后者是由测量误差和混杂因素偏差线性组成的,由于多个GWAS队列之间的样本重叠而出现权衡。为解决这个问题,我们提出了一种新颖的多变量MR方法,即使用校正偏差估计方程(MRBEE)的MR方法,可使用多个弱IV推断无偏因果关系。在中等条件下研究了多变量IVW和MRBEE的渐近行为,表明MRBEE在无偏性和渐近有效性方面优于多变量IVW。我们应用MRBEE来研究近视,并证实学校和驾驶时间是近视的因果因素。在随后的全基因组多向性测试中,确定了近视的新领域。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
97+阅读 · 2023年5月10日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
97+阅读 · 2023年5月10日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员