Since the recent study (Krichene and Rendle 2020) done by Krichene and Rendle on the sampling-based top-k evaluation metric for recommendation, there has been a lot of debates on the validity of using sampling to evaluate recommendation algorithms. Though their work and the recent work (Li et al.2020) have proposed some basic approaches for mapping the sampling-based metrics to their global counterparts which rank the entire set of items, there is still a lack of understanding and consensus on how sampling should be used for recommendation evaluation. The proposed approaches either are rather uninformative (linking sampling to metric evaluation) or can only work on simple metrics, such as Recall/Precision (Krichene and Rendle 2020; Li et al. 2020). In this paper, we introduce a new research problem on learning the empirical rank distribution, and a new approach based on the estimated rank distribution, to estimate the top-k metrics. Since this question is closely related to the underlying mechanism of sampling for recommendation, tackling it can help better understand the power of sampling and can help resolve the questions of if and how should we use sampling for evaluating recommendation. We introduce two approaches based on MLE (MaximalLikelihood Estimation) and its weighted variants, and ME(Maximal Entropy) principals to recover the empirical rank distribution, and then utilize them for metrics estimation. The experimental results show the advantages of using the new approaches for evaluating recommendation algorithms based on top-k metrics.


翻译:自从Krichene和Rendle最近对基于抽样的顶级评价标准进行研究(Kritene和Rendle 2020)以来,Krichene和Rendle最近对建议算法的评价标准进行了研究(Krichene和Rendle 2020),此后,关于使用抽样评价标准来评价建议算法的有效性,已经进行了大量辩论。尽管他们的工作和最近的工作(Li等人2020)提出了一些基本方法,以便向其全球对口单位绘制基于抽样的衡量标准,将整个一组项目排在前列,但对于如何将抽样用于建议评价仍然缺乏了解和共识。拟议的方法要么是非信息化(将抽样与指标评价挂钩),要么只能对简单指标进行工作,例如Recall/Pricision(Krichene and Rendle 2020);虽然他们的工作和最近的工作(Li等人,Liet al.2020年),我们提出了关于学习经验等级分布的新研究问题,以及根据估计排名分布的新办法。由于这个问题与建议所采用的取样基本机制密切相关,因此可以帮助更好地了解抽样评估能力,因此可以帮助解决是否和如何评估问题。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【C4P推荐】人工智能领域顶级会议AAAI
Call4Papers
3+阅读 · 2017年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【C4P推荐】人工智能领域顶级会议AAAI
Call4Papers
3+阅读 · 2017年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员