This work explores the evaluation of a machine learning anomaly detector using custom-made parameterizable malware in an Internet of Things (IoT) Ecosystem. It is assumed that the malware has infected, and resides on, the Linux router that serves other devices on the network, as depicted in Figure 1. This IoT Ecosystem was developed as a testbed to evaluate the efficacy of a behavior-based anomaly detector. The malware consists of three types of custom-made malware: ransomware, cryptominer, and keylogger, which all have exfiltration capabilities to the network. The parameterization of the malware gives the malware samples multiple degrees of freedom, specifically relating to the rate and size of data exfiltration. The anomaly detector uses feature sets crafted from system calls and network traffic, and uses a Support Vector Machine (SVM) for behavioral-based anomaly detection. The custom-made malware is used to evaluate the situations where the SVM is effective, as well as the situations where it is not effective.
翻译:这项工作探索了对机器学习异常现象探测器的评价,该软件在物(IoT)生态系统的互联网上使用自定义的可参数的恶意软件。 假设恶意软件已经感染并存在于为网络上其他设备服务的Linux路由器上,如图1所示, 这个IoT生态系统是用来评价基于行为异常探测器的功效的测试材料。 恶意软件由三种自定义的恶意软件组成: 赎金软件、 加密软件和键盘器, 所有这些都具有向网络过滤的能力。 恶意软件的参数化为恶意软件样本提供了多种程度的自由, 具体涉及数据过滤的速度和大小。 异常探测器使用系统电话和网络通信制作的功能装置, 并使用支持矢量机( SVM) 进行基于行为的异常探测。 定制的恶意软件用于评估SVM 有效的情况, 以及无效的情况 。