Assessing the statistical significance of network patterns is crucial for understanding whether such patterns indicate the presence of interesting network phenomena, or whether they simply result from less interesting processes, such as nodal-heterogeneity. Typically, significance is computed with reference to a null model. While there has been extensive research into such null models for unweighted graphs, little has been done for the weighted case. This article suggests a null model for weighted graphs. The model fixes node strengths exactly, and approximately fixes node degrees. A novel MCMC algorithm is proposed for sampling the model, and its stochastic stability is considered. We show empirically that the model compares favorably to alternatives, particularly when network patterns are subtle. We show how the algorithm can be used to evaluate the statistical significance of community structure.


翻译:评估网络模式的统计意义,对于了解这种模式是否表明存在有趣的网络现象,或者它们是否仅仅是由不那么有趣的过程,例如交点异质性,例如交点异质性,至关重要。通常,根据一个无效模型来计算其重要性。虽然对未加权图案的这种无效模型进行了广泛的研究,但对于加权图案却没有做多少工作。本条建议加权图案的无效模型。模型精确地固定节点强度,大约固定节点度。提议采用新的MCMC算法对模型进行取样,并考虑其随机稳定性。我们从经验上表明,模型优于替代方法,特别是在网络模式微妙的情况下。我们展示了如何使用算法来评估共同体结构的统计意义。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员