Aquatic organisms can use hydrodynamic cues to navigate, find their preys and escape from predators. We consider a model of two competing microswimmers engaged in a pursue-evasion task while immersed in a low-Reynolds-number environment. The players have limited abilities: they can only sense hydrodynamic disturbances, which provide some cue about the opponent's position, and perform simple manoeuvres. The goal of the pursuer is to capturethe evader in the shortest possible time. Conversely the evader aims at deferring capture as much as possible. We show that by means of Reinforcement Learning the players find efficient and physically explainable strategies which non-trivially exploit the hydrodynamic environment. This Letter offers a proof-of-concept for the use of Reinforcement Learning to discover prey-predator strategies in aquatic environments, with potential applications to underwater robotics.
翻译:水生生物可以使用流体动力导线来导航、找到猎物和逃离掠食者。 我们考虑的是两种相互竞争的微晶晶体分子在沉浸在低Reynolds数量环境中时,从事一项追求的逃避任务的模式。 玩家的能力有限: 他们只能感知流体动力干扰, 从而对对手的位置提供某种提示, 并进行简单的操作。 捕捉者的目标是在尽可能短的时间内捕捉躲避者。 相反, 躲避者的目标是尽可能推迟捕捉。 我们通过加强学习, 显示玩家们找到了高效和物理上可以解释的策略, 而这些策略是非边际利用流体动力环境。 这封信提供了一种验证概念, 用于利用加强学习发现水生环境中的捕食者策略, 并有可能应用于水下机器人 。