Guruswami and Xing introduced subspace designs in 2013 to give the first construction of positive rate rank metric codes list-decodable beyond half the distance. In this paper we provide bounds involving the parameters of a subspace design, showing they are tight via explicit constructions. We point out a connection with sum-rank metric codes, dealing with optimal codes and minimal codes with respect to this metric. Applications to two-intersection sets with respect to hyperplanes, two-weight codes, cutting blocking sets and lossless dimension expanders are also provided.
翻译:暂无翻译