In this paper, we investigate in detail the structures of the variational characterization $A_{N,t}$ of the spherical $t$-design, its gradient $\nabla A_{N,t}$, and its Hessian $\mathcal{H}(A_{N,t})$ in terms of fast spherical harmonic transforms. Moreover, we propose solving the minimization problem of $A_{N,t}$ using the trust-region method to provide spherical $t$-designs with large values of $t$. Based on the obtained spherical $t$-designs, we develop (semi-discrete) spherical tight framelets as well as their truncated systems and their fast spherical framelet transforms for the practical spherical signal/image processing. Thanks to the large spherical $t$-designs and localization property of our spherical framelets, we are able to provide signal/image denoising using local thresholding techniques based on a fine-tuned spherical cap restriction. Many numerical experiments are conducted to demonstrate the efficiency and effectiveness of our spherical framelets, including Wendland function approximation, ETOPO data processing, and spherical image denoising.
翻译:在本文中,我们详细调查了以快速球体口音变异为条件的 变异特性 $A<unk> N,t}美元 球价设计,其梯度 $nabla A<unk> N,t}$, 以及它的球形紧密框架板结构, 以及它们的变异系统, 以及它们用于实用球状信号/图像处理的快速球状框架变换。 此外,我们提议用信任区域方法解决美元(t}) 的最小化问题, 以提供高值美元球状设计。 根据获得的球状美元设计, 我们开发(半分解) 球形紧凑框架, 以及它们的系统, 以及它们快速球状框架变异。 由于我们球形框架的庞大球体美元配置和本地化特性, 我们能够提供信号/信号/信号解动, 使用基于精密的球状美元设计, 设计, 我们用本地的门槛技术, 以精确的图像处理方式, 展示了我们的数据效率, 包括精确的模版限制。</s>